tuberculosis H37Rv using phase separation with Triton X-114. The efficacy of this method was shown with Mycobacterium bovis BCG in a previous work [14]. Comparison of expressed levels of the identified AZD6244 nmr proteins was performed using the emPAI [15, 16] This approach relates the number of experimentally
observed peptide ions in a given protein to the number of theoretically observable peptides. Our results show that among the membrane-and membrane-associated proteins several proteins are present in high relative abundance. Using bioinformatic analysis, we also found that the gene sequence encoding Rv3623 which is annotated as a potential lipoprotein in both M. tuberculosis and M. bovis, is shorter in M. bovis and have lost the N-terminal signal peptide and lipobox that mediate the prelipoprotein translocation and its subsequent lipidation Tucidinostat nmr that retains it to the membrane. Results Identification of Triton X-114 extracted proteins The aim of this study was to enrich and perform a comprehensive PND-1186 cell line proteomic analysis of membrane- and membrane-associated proteins of the virulent reference strain M. tuberculosis H37Rv. For this purpose,
the hydrophobic proteins were enriched by lysing whole bacilli followed by phase separation with the Triton X-114 detergent. After phase separation, the proteins in the lipid phase were precipitated by acetone and separated by SDS-PAGE. As shown in Figure 1 panel A, the lipid phase was quite complex, but appeared to be enriched for certain proteins as compared
to the unfractionated crude lysate. In a parallel experiment, and to validate that the protein content in the lipid and aqueous phases were different, proteins from both phases were separated and transferred to nitrocellulose membranes which were developed with polyclonal antibodies against a cell wall fraction of M. bovis BCG (Figure 1, panel B). Notably, Figure 1 not only demonstrates that the protein content of the aqueous phase and the lipid phase was different, but mafosfamide also clearly shows that the lipid phase was indeed enriched for cell wall proteins. In order to identify the proteins of the Triton X-114 detergent fraction, the protein mixture was separated with SDS-PAGE (Figure 1A), run in duplicate and cut into ten pieces each (twenty fractions in total) and subjected to in-gel digestion by trypsin. The resulting peptides were eluted and analysed by high accuracy mass spectrometry. Additional file 1, Figure S1 illustrates the sequence obtained for ion m/z 1210.62 which was identified by Mascot as peptide CGSPAWDLPTVFGPIAITYNIK from protein Rv0932c with a Mascot score of 79. Such fragmentation data contain a very good coverage of the expected y- and b-series daughter ions plus the presence of other ions which indicates the correct MS/MS assignment such as two highly abundant y-ions of proline (y19++ and y14). This is very typical for peptides containing proline. Figure 1 SDS-PAGE analysis of the extracted M.