49–51 It remains uncertain as to whether it is the treatment of SHPT or the achieved PTH level that confer the greatest benefit. This uncertainty is reflected in the recent international Kidney Disease Improving Global Outcomes (KDIGO) clinical guidelines which recommend a PTH range of 2–9 times the upper limit of the normal level in patients with CKD 5 on dialysis.52 A greater understanding of FGF-23 physiology, its role in CKD-MBD and elevated levels seen in CKD, have
focused research on the potential role of FGF-23 as a prognostic marker (Table 1). FGF-23 has been correlated with phosphate in clinical studies.43 In a nested case–control sample of 400 patients in the Accelerated Mortality on Renal Replacement (ArMMOR) study, high FGF-23 levels were shown to predict 1 year mortality
independent Z-IETD-FMK nmr of phosphate levels.53 FGF-23 levels were also associated with higher mortality in patients with near normal levels of phosphate. A prospective cohort study of 219 dialysis patients undergoing 5–8 h dialysis CDK inhibitor review also demonstrated an association between FGF-23 levels and mortality, again independent of phosphate.38 Although FGF-23 levels in these two studies did not demonstrate additional prognostic information when compared with phosphate levels, the possibility of using FGF-23 as a biomarker in patients with normal phosphate levels is of interest and needs to be prospectively assessed. Increased mortality associated with biomarkers of CKD-MBD is predominantly attributed to an increased CV risk. The effects of FGF-23 on the incidence oxyclozanide and mechanisms of CVD in the CKD population have been explored. In an observational study of 833 patients with early CKD and stable coronary
artery disease, elevated FGF-23 was independently associated with mortality and CV events.55 Another cohort study of 967 patients with early CKD reported elevated FGF-23 levels correlated with arterial stiffness and endothelial dysfunction.57 In a subset of these patients, FGF-23 was associated with a greater atherosclerotic burden as measured by whole body magnetic resonance angiography.58 FGF23 has also been variably associated with vascular calcification, although a likely association may be obscured by the differences in diagnostic techniques and reporting of calcification scores.38,59 In a study of 162 CKD patients and 58 non-CKD patients where LVH was assessed by echocardiogram and computed tomography, FGF-23 was found to be independently and significantly associated with LVH and left ventricular mass index.56 A study of 795 Swedish patients also reported that FGF23 levels were independently associated with concentric LVH (odds ratio (OR) 1.45, 95% confidence interval (CI) 1.19–1.77) and left ventricular mass index. The association was stronger in those with eGFR < 60 mL/min (OR 1.83, CI 1.17–2.85).60 The significance of these associations remains unclear.