5 x TAE-buffer and after staining with ethidium bromide visualized under UV-light (Bio-Rad Gel Doc XR System, 254 nm). PCR products were purified using the EZNA Cycle Pure Kit (Omega Bio-Tek Inc., Norcross, GA, USA). If necessary, purified PCR products were cloned into the pGEM-T Vector (Promega, Madison, WI, USA) and transformed in Escherichia coli DH5α cells. Plasmids containing inserts with expected sizes were selected and sequenced with SP6/T7 primers
(Table 2) by LGC Genomics (Berlin, click here Germany). Sequences were submitted to the EMBL Nucleotide Sequence Database. Phylogenetic analysis of the Rickettsia endosymbionts DNA sequences of the amplified Rickettsia species were aligned with Rickettsia sequences found via BLASTN-searches against the NCBI nucleotide (nr) databank [37]. Alignments were made with ClustalW as implemented in BioEdit [38]. A concatenated alignment of three genes was constructed, using the 16S rRNA gene, the citrate synthase gene (gltA) and the cytochrome c oxidase I gene (coxA). Genes used for constructing the phylogenetic tree are summarized in additional file 1. Missing data was allowed in our alignment, as not all three genes have been sequenced for all used Rickettsia sequences [18]. Phylogenetic reconstruction was performed under Bayesian Maximum Likelihood Inference, using Mr. Bayes version 3.1.2 [39]. The model of evolution was chosen with MrModeltest version 2.2 [40] and the Akaike information criterion. The general time
reversible (GTR) + invariant sites (I) + gamma distribution (G) {Selleck Anti-infection Compound Library|Selleck Antiinfection Compound Library|Selleck Anti-infection Compound Library|Selleck Antiinfection Compound Library|Selleckchem Anti-infection Compound Library|Selleckchem Antiinfection Compound Library|Selleckchem Anti-infection Compound Library|Selleckchem Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|buy Anti-infection Compound Library|Anti-infection Compound Library ic50|Anti-infection Compound Library price|Anti-infection Compound Library cost|Anti-infection Compound Library solubility dmso|Anti-infection Compound Library purchase|Anti-infection Compound Library manufacturer|Anti-infection Compound Library research buy|Anti-infection Compound Library order|Anti-infection Compound Library mouse|Anti-infection Compound Library chemical structure|Anti-infection Compound Library mw|Anti-infection Compound Library molecular weight|Anti-infection Compound Library datasheet|Anti-infection Compound Library supplier|Anti-infection Compound Library in vitro|Anti-infection Compound Library cell line|Anti-infection Compound Library concentration|Anti-infection Compound Library nmr|Anti-infection Compound Library in vivo|Anti-infection Compound Library clinical trial|Anti-infection Compound Library cell assay|Anti-infection Compound Library screening|Anti-infection Compound Library high throughput|buy Antiinfection Compound Library|Antiinfection Compound Library ic50|Antiinfection Compound Library price|Antiinfection Compound Library cost|Antiinfection Compound Library solubility dmso|Antiinfection Compound Library purchase|Antiinfection Compound Library manufacturer|Antiinfection Compound Library research buy|Antiinfection Compound Library order|Antiinfection Compound Library chemical structure|Antiinfection Compound Library datasheet|Antiinfection Compound Library supplier|Antiinfection Compound Library in vitro|Antiinfection Compound Library cell line|Antiinfection Compound Library concentration|Antiinfection Compound Library clinical trial|Antiinfection Compound Library cell assay|Antiinfection Compound Library screening|Antiinfection Compound Library high throughput|Anti-infection Compound high throughput screening| model was chosen, in which 106 generations were analyzed, sampling trees every 100 generations. The first 2500 trees were discarded as ‘burn-in’. Orientia ifoxetine tsutsugamushi was chosen as the outgroup. All trees were visualized in Treeview
[41]. Denaturing Gradient Gel Electrophoresis (PCR-DGGE) A PCR-DGGE was performed using the hypervariable V3-region of the 16S rRNA gene. For this purpose, genomic DNA was extracted from male and female adults from the collected M. pygmaeus and M. caliginosus populations and from a tetracycline-cured strain of M. pygmaeus. Five to ten adults were pooled for each population. First, a PCR-DGGE was carried out using a non-nested PCR approach with Selleck Temsirolimus primer pair 318F-518R (Table 2) in 50µl reaction mixtures as described above. Amplification conditions were: 95 °C for 5 min, followed by 33 cycles of 95 °C for 30 s, 55 °C for 45 s, 72 °C for 1 min 30 s and a final elongation of 65 min at 72 °C to avoid artifactual double bands [42]. However, this approach also amplified the 18S rRNA gene of Macrolophus spp. (data not shown). The high amplification of this gene can suppress the detection of bacteria with a low titer. Consequently, a semi-nested PCR was carried out on all populations to avoid the Macrolophus 18S rDNA band showing up in the PCR-DGGE-profile. The semi-nested PCR was carried out using the 27F-primer, which is widely used for the molecular detection of bacteria [43, 44].