Figure 3a shows the according scattering cross section of a 120-nm radius nanoparticle from Ag with dielectric function fitted according to the Drude model. The sum as well as the division into the individual order modes is given. The main resonance at
λ approximately 700 nm can be attributed to the dipole electric mode, the dominant peaks at shorter wavelengths related to the quadrupole, the hexapole, and the octopole electric mode. We want to note that for the metallic nanoparticles, the resonance peaks result from maxima of the electric modes. Magnetic modes only appear at shorter wavelengths and are much less pronounced. Comparing the scattering to the Ferrostatin-1 mouse absorption cross section (see Additional file 1: Figure S1), the lower order modes, i.e., especially the dipole mode, are more favorable for efficient scattering. The near field distributions of the
BAY 11-7082 electromagnetic field around the nanoparticle are given in Figure 3b at the peak wavelengths of the dominant electric modes. Since the nanoparticle investigated MI-503 mw is of metallic nature, we find no strong electromagnetic field inside the particle where the free charge carriers can compensate local fields. However, the metal fulfills the particle plasmon resonance condition (see Equation 13), and the related plasmonic collective oscillations of the electrons cause strong electromagnetic fields to build up around the surface of the nanoparticle which are characterized by knots according to the respective order. A slightly stronger electromagnetic field in the forward direction is the result of interference with the incident light. Figure 3 Scattering and near fields of a metallic nanoparticle. (a) Scattering cross section of a 120-nm radius Ag nanoparticle
with dielectric function according to a Drude fit; sum and allocation to different order and electromagnetic (E/M) modes. (b) Near field distribution of the electromagnetic field around the nanoparticle for the dipole, the quadrupole, the hexapole, and the octopole electric mode at wavelengths of 688, 426, 340, and 298 nm, respectively, RG7420 manufacturer which correspond to the maxima in scattering (incident light from the top). Dielectrics Dielectrics show an imaginary part of the refractive index which is zero, i.e., no absorption, which makes them favorable to be used as the material for scattering nanoparticles. The main question is whether these dielectric nanoparticles can give scattering cross sections comparable to the ones of metallic nanoparticles. The refractive index of a typical dielectric is often times described with a Cauchy model, yet since it is constant over a wide wavelength range, we approximate it with n = const (=2 here) and k = 0. We choose n = 2 since the value is a compromise for the most popular oxides SiO2 (n approximately 1.5) and TiO2 (n approximately 2.5) or also Al2O3 (n approximately 1.7) and ZrO2 (n approximately 2.2).