Gene 2003, 318:185–191.PubMedCrossRef 75. Bielen AAM, Willquist K, Engman J, Van Der Oost J, Van Niel EWJ, Kengen SWM: Pyrophosphate as a central energy carrier in the hydrogen-producing extremely thermophilic Caldicellulosiruptor Bafilomycin A1 ic50 saccharolyticus. FEMS Microbiol Lett 2010,307(1):48–54.PubMedCrossRef 76. Mukund S, Adams MW: Glyceraldehyde-3-phosphate ferredoxin oxidoreductase, a novel tungsten-containing enzyme with a potential glycolytic role in the hyperthermophilic archaeon
Pyrococcus furiosus. J Biol Chem 1995,270(15):8389–8392.PubMedCrossRef 77. Gowen CM, Fong SS: Genome-scale metabolic model integrated with RNAseq data to identify metabolic states of Clostridium thermocellum. Biotechnol J 2010,5(7):759–767.PubMedCrossRef 78. Li Y, Tschaplinski TJ, Engle NL, Hamilton CY, Rodriguez M Jr, Liao JC, Schadt CW, Guss AM, Yang Y, Graham DE: Combined inactivation of the Clostridium cellulolyticum see more lactate and malate dehydrogenase genes substantially increases ethanol yield from cellulose
and switchgrass fermentations. Biotechnol Biofuels 2012,5(1):2.PubMedCrossRef 79. Axley MJ, Grahame DA, Stadtman TC: Escherichia coli formate-hydrogen lyase. Purification and properties of the selenium-dependent formate dehydrogenase component. J Biol Chem 1990,265(30):18213–18218.PubMed 80. Garvie EI: Bacterial lactate dehydrogenases. Microbiol Rev 1980,44(1):106–139.PubMed 81. van de Werken HJ, Verhaart MR, VanFossen AL, Willquist K, Lewis DL, Nichols JD, Goorissen HP, Mongodin EF, Nelson KE, van Niel EW, et al.: Hydrogenomics of the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus. Appl Environ Microbiol 2008,74(21):6720–6729.PubMedCrossRef 82. Membrillo-Hernandez J, Echave P, Cabiscol E, Tamarit J, Ros J, Lin EC: Evolution of the adhE gene product of Escherichia coli from a functional reductase to a dehydrogenase. Genetic and biochemical studies of the mutant
proteins. J Biol Chem 2000,275(43):33869–33875.PubMedCrossRef 83. Zhu J, Shimizu K: Effect (-)-p-Bromotetramisole Oxalate of a single-gene knockout on the metabolic regulation in Escherichia coli for D-lactate production under microaerobic condition. Metab Eng 2005,7(2):104–115.PubMedCrossRef 84. Asanuma N, Hino T: Effects of pH and energy supply on activity and amount of pyruvate formate-lyase in Streptococcus bovis. Appl Environ Microbiol 2000,66(9):3773–3777.PubMedCrossRef 85. Asanuma N, Yoshii T, Hino T: Molecular characteristics and transcription of the gene encoding a multifunctional alcohol dehydrogenase in relation to the deactivation of pyruvate formate-lyase in the ruminal bacterium Streptococcus bovis. Arch Microbiol 2004,181(2):122–128.PubMedCrossRef 86. Brown SD, Guss AM, Karpinets TV, Parks JM, Smolin N, Yang S, Land ML, Klingeman DM, Bhandiwad A, Rodriguez M Jr, et al.: Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum.