However, there were no differences in RQ or plasma FFA or TG between the dietary groups. Neither lactate nor glucose contents of plasma were different between the groups, so it is not possible to discuss the changes MK 8931 manufacturer in the use of substrates in energy production, which could Captisol explain the differences in oxygen consumption. On the other hand, in the present study, serum albumin increased
during LPVD by 5.8%. This could partially explain the higher oxygen consumption because serum albumin enables a higher rate of FFA transportation to muscle cells [22]. Metabolic acidosis inhibits albumin synthesis [23], so serum albumin content and SID, which both increased during LPVD, refer together to decreased acidosis. More controlled diet interventions this website should be used in the future to clarify this finding. In an earlier study by Galloway and Maughan [21], oxygen consumption increased because of alkalosis, when the subjects exercised at 70% of VO2max, but there was no difference in RQ. It was discussed that alkalosis would have caused a slight change in the use of substrates, which increased the oxygen consumption, but the change was so small that it could not be seen in RQ. In another study [24], metabolic alkalosis induced by NaHCO3 accelerated the increase of VO2 at the onset of high-intensity exercise (87% of VO2max). However, at a lower intensity (40% of VO2max), the alkalosis
had no effect on the kinetics of breathing and oxygen consumption. Acidosis may, in turn, reduce the capacity of hemoglobin to bind oxygen and may reduce the oxygen content of the blood [25]. After LPVD, the subjects may have had an increased capacity to transport oxygen in the blood, but because of the lack of measurable change in acid–base status besides the minor change in SID, this is speculation.
It may also be that LPVD increased the need for oxygen, and as a consequence, oxidation of all substrates increased during submaximal cycling, which could explain the lack of changes in RQ. These results suggest that the energy expenditure was greater and cycling economy poorer after LPVD. In the present study Interleukin-3 receptor insulin-like growth factor 1 (IGF-1) was not measured but according to our recently collected and unpublished data, serum IGF-1 increased during a 7 d high-protein diet and decreased during a 7 d low-protein vegetarian diet. The difference in IGF-1 could be one reason for the difference in oxygen consumption, since lower serum IGF-1 levels may result in poorer exercise economy [26]. In future studies it would be reasonable to control the energy intake of the diets to minimize the effect of difference in caloric intake on performance. However, the subjects were instructed to eat according to their perceived energy needs and they were free to make their own nutritional choices within the given instructions.