Many of the secreted

proteins were found to have predicte

Many of the secreted

proteins were found to have predicted hydrolytic activities: two genes (PPA0644 and PPA2106) are predicted endo-glycoceramidases, sharing 42% identity on the protein level. Although their substrate specificities are unknown, PPA0644 and PPA2106 share 27% and 30% protein identity, respectively, with the characterized and structurally analyzed endo-glycoceramidase II from Rhodococcus sp., which hydrolyzes glycosidic linkages between the oligosaccharide and ceramide moieties of gangliosides [29]. Another secreted protein, PPA2164, a glycoside hydrolase family 3 protein, shares 31% identity on the protein level with NagZ (formerly YbbD) of B. subtilis. Mdivi1 purchase NagZ is a β-N-acetylglucosaminidase involved in the peptidoglycan recycling pathway; it cleaves the terminal non-reducing N-acetylglucosamine of muropeptides

[30]. P. acnes also secreted a putative lysozyme (PPA1662) which is 47% identical on the protein level to the muramidase from Streptomyces coelicolor. This muramidase not only cleaves the β-1,4-glycosidic bond between N-acetylmuramic acid and N-acetylglucosamine units, but also exhibits β-1,4-N,6-O-diacetylmuramidase activity, enabling this S63845 enzyme to degrade Staphylococcus aureus cell walls [31]. Whether PPA1662 is an autolytic lysozyme involved in cell wall turnover has still to be elucidated. However, the peptidoglycan of P. acnes contains non-N-acetylated glucosamine residues and is therefore resistant to lysozyme [32]. We speculate that PPA1662 has a different substrate specificity, acting on non-N-acetylated peptidoglycan, or, alternatively, it acts as a defense system against competing bacteria on the skin. Two strains, KPA and 329, secreted a hyalorunate lyase (PPA0380), confirming previous PCI-34051 price investigations on a P. acnes protein with hyalorunate lyase activity [33, 34]. Preliminary the functional characterization revealed that

the enzyme exerted activity against chondroitin 4- and 6-sulphates but not against dermatan sulphate [33]. In accordance, the closest characterized homolog, the chondroitin lyase of Arthrobacter aurescens (37% protein identity to PPA0380) acts on chondroitin sulfate but not on dermatan sulfate [35]. Similar to other chondroitin lyases, it is capable of cleaving hyaluronan, a non-sulfated glycosaminoglycan and a major component of the extracellular matrix of connective tissues. Consistent with the known lipolytic activity of P. acnes [36], we identified lipolytic enzymes in the secretory fraction, including the previously characterized triacylglycerol lipase, designated glycerol-ester hydrolase A (GehA; PPA2105).

Comments are closed.