Pre-treatment of L acidophilus increased cytoplasmic IκBα but de

Pre-AZD8186 mouse treatment of L. acidophilus increased cytoplasmic IκBα but decreased the nuclear NF-κB levels induced by H. pylori in a dose-dependent manner (Figure 3). Because IκBα level could be mediated by activating the TGF-β1/Smad signaling pathway, the role Smad7 played in L. acidophilus restoring TGF-β1/Smad activity after H. pylori challenge was tested. Figure 3 The IκBα and NFκB expressions after various doses of L. acidophilus pretreatment for 8 hours followed by H. pylori co-incubation for 1 hour. N, MKN45 cell only; P, H. pylori, 1 × 108 c.f.u. treatment for 1 hour; MOI 1, pre-treatment with L. acidophilus

1 × 106 c.f.u. for 8 hours followed by H. pylori click here treatment for 1 hour; MOI 10, L. acidophilus 1 × 107 c.f.u. followed by H. pylori treatment for 1 hour; MOI 100, L. acidophilus 1 × 108 c.f.u. followed Barasertib by H. pylori treatment for 1 hour (*P < 0.05). L. acidophilus

inhibited H. pylori-and IFN-γ-induced Smad7 expression The Figure 4A shows that pre-treatment with high-dose L. acidophilus (MOI 100) for 8 h prevented H. pylori-induced Smad7 production by semi-quantitative RT-PCT. Compared to positive controls (AGS cells co-incubated with H. pylori at MOI 100), L. acidophilus pretreatment as high as MOI 100 significantly reduced the H. pylori-induced Smad7 production at the RNA level (P < 0.05) via inactivation of Jak1 and Stat1 transcriptions. L. acidophilus pre-treatment also inhibited the expression of IFN-γ-induced Smad7 protein (P < 0.05) in vitro, with a subsequent increase in cytoplasmic IκBα (P < 0.01) and a decrease in nuclear NF-κB (P < 0.01) (Figure 4B). Figure 4 Pre-treatment of L. acidophilus significantly reduced JAK1 (MOI 1-100), STAT1 (MOI 10-100), and SMAD7, and subsequent NFκB production after (A) H. pylori and (B) IFN-γ treatment. N, AGS cell only; P, H. pylori, MOI = 100 (A, black column) and 100 ng/ml IFN-γ (B, black column) treatment for 0.5 hour; MOI 1, 10, and 100 meant pre-treatment with L. acidophilus 1 × 106, 1 × 107, 1 × 108 c.f.u. crotamiton for 8 hours, respectively, followed by H. pylori treatment for 0.5 hour (* P < 0.05; ** P < 0.01). Discussion Human immunity plays an important role in the development

of more serious clinical diseases after H. pylori infection because of increased pro-inflammatory cytokine expressions on the patients’ gastric mucosa [6, 8]. H. pylori infection can activate NF-κB in gastric epithelium cells and subsequently up-regulate IL-8 gene transcription [4]. Consistent with previous human studies [6–9], the present study reveals that H. pylori infection can induce TNF-α and IL-8 pro-inflammatory cytokine expressions in vitro. In agreement with the animal study reported by McCarthy et al. [35], the present study illustrates that yogurt-containing probiotics, L. acidophilus does not stimulate pro-inflammatory cytokines after an 8-hour incubation with MKN45 cells. This suggests that probiotics can exert anti-inflammatory effects in vitro.

Comments are closed.