The as-synthesized

The as-synthesized CuGaS2 nanoplates adopt a unique crystal structure of wurtzite-zincblende polytypism. In the growth process of CuGaS2 nanoplates, copper sulfides firstly formed, and then the as-formed copper sulfides

were gradually phase-transformed to CGS nanoplates with proceeding of the reaction. The optical bandgap energy of the nanoplates is estimated to be approximately 2.24 eV. Our results will aid in the application of two-dimensional CuGaS2 nanoplates and the synthesis of other multicomponent sulfide nanomaterials. Acknowledgements FK866 price This work was supported by the National Natural Science Foundation of China (No. 91022033, No. 21171158), and National Basic Research Program of China (2010CB934700). Electronic supplementary material Additional file 1:

Three crystal structure models of CuGaS2 and an XRD pattern of an intermediate sample. Figure S1. Three crystal structure models of CuGaS2 (a) tetragonal chalcopyrite structure; (b) cation-disordered cubic zincblende modification, (c) cation-disordered hexagonal wurtzite phase. Figure S2. XRD pattern of a sample collected at 220°C for 0 min. In the present case, Cu2-xS (JCPDS 23–0959) seems to contribute to the experimental pattern. (DOC 872 KB) References 1. Zhong H, Bai Z, Zou B: Tuning the luminescence properties of colloidal I–III–VI semiconductor nanocrystals for optoelectronics and biotechnology applications. J Phys Chem Lett 2012, 3:3167–3175.CrossRef 2. Aldakov D, Lefrancois A, Reiss P: Ternary and quaternary metal chalcogenide nanocrystals: synthesis, properties and applications. J Mater Chem C 2013, JPH203 ic50 1:3756–3776.CrossRef 3. Panthani MG, Akhavan V, Goodfellow B, Schmidtke JP, Dunn L, MK5108 molecular weight Dodabalapur A, Barbara PF, Korgel BA: Synthesis of CuInS 2 , CuInSe 2 , and Cu(In x Ga 1- x )Se 2 (CIGS) nanocrystal “inks” for printable photovoltaics. J Am Chem Soc 2008, 130:16770–16777.CrossRef 4. Tsuji

I, Kato H, Kudo A: Photocatalytic hydrogen evolution on ZnS-CuInS 2 -AgInS 2 solid solution photocatalysts with wide visible light absorption bands. Chem Mater 2006, 18:1969–1975.CrossRef 5. Song WS, Yang H: Efficient 4��8C white-light-emitting diodes fabricated from highly fluorescent copper indium sulfide core/shell quantum dots. Chem Mater 2012, 24:1961–1967.CrossRef 6. Pons T, Pic E, Lequeux N, Cassette E, Bezdetnaya L, Guillemin F, Marchal F, Dubertret B: Cadmium-free CuInS 2 /ZnS quantum dots for sentinel lymph node imaging with reduced toxicity. ACS Nano 2010, 4:2531–2538.CrossRef 7. Xie RG, Rutherford M, Peng XG: Formation of high-quality I-III-VI semiconductor nanocrystals by tuning relative reactivity of cationic precursors. J Am Chem Soc 2009, 131:5691–5697.CrossRef 8. Pan DC, An LJ, Sun ZM, Hou W, Yang Y, Yang ZZ, Lu YF: Synthesis of Cu-In-S ternary nanocrystals with tunable structure and composition. J Am Chem Soc 2008, 130:5620–5621.CrossRef 9.

Comments are closed.