Three isolates were negative for one of the genes, two isolates n

Three isolates were negative for one of the genes, two isolates negative for vcsC2 and one isolate negative for vcsV2. The primer binding regions in the genes of these isolates may be divergent leading to non-amplification, but it is also possible that the genes are deleted. It seemed that the pathogenicity of the majority of the isolates was due to the presence of the T3SS since 35 isolates possessed one or both T3SS genes (87.5%),which is different from that reported in Bangladesh (38.9%) [45] and in India (31.5%) [16]. The varying presence of virulence factors among different

non-O1/non-O139 strains may be associated with their ability GSK690693 in vivo to cause disease. Further studies are warranted. Conclusion Our study is the first

report which showed that non-O1/non-O139 V. cholerae was an important pathogen in China, causing diarrhoeal infections with an isolation rate of 1.2%. MLST revealed that a single ST, ST80, was predominant in Zhejiang Province. ST80 persisted over several years and appeared in different cities. It caused two outbreaks in recent years. Since the majority of the isolates were positive for T3SS but negative for any other virulence factors tested, the T3SS was likely to be the key virulence factor for these isolates. Resistance to commonly used antibiotics limits PF-6463922 solubility dmso choice of drugs for treating non-O1/non-O139 V. cholerae infections. Our study highlights that non-O1/non-O139 V. IMP dehydrogenase cholerae has been neglected as an important cause of diarrhoea in China and may be the same in other developing countries. Close monitoring of non-O1/non-O139 V. cholerae capable of causing outbreaks in China is necessary

to reduce the health burden of diarrhoeal infections caused by this pathogen. Methods Bacterial isolates Faecal samples from sporadic and outbreak cases were collected by local hospitals as part of standard patients care over a five year period from diarrhoeal patients at local hospitals in Zhejiang Province, China, and were sent to Zhejiang Provincial CDC laboratory for isolation of V. cholerae. Potential V. cholerae isolates from the faecal samples were grown onto No. 4 Agar (1% sodium citrate, 0.5% pig gall powder, 0.003% rivano powder, 0.2% sodium sulphite, 0.1% sodium lauryl sulphate, 0.001% potassium tellurite, and 500 μg/L gentamicin). All retrieved isolates were serologically tested for agglutination of O1 or O139 antisera (Denka Seiken, Japan) and all were shown to be negative. V. cholerae isolates were also obtained from an active surveillance program of enteric bacterial pathogens which was coordinated by Zhejiang Provincial CDC and was conducted in two Provincial hospitals in Hangzhou between May and December in 2010. Faecal specimens were obtained with written informed consent of the patients and with the approval of the Zhejiang Provincial CDC ethics committee, according to the medical research Selleckchem GF120918 regulations of Ministry of Health, China.

Comments are closed.