Kidney Int. 2009;76:422–7 [IVa].PubMedCrossRef 179. Abizaid AS, Clark CE, Mintz Selleckchem Stattic GS, Dosa S, Popma JJ, Pichard AD, et al. Effects of dopamine and aminophylline on contrast-induced acute renal failure after coronary angioplasty in patients with
preexisting renal insufficiency. Am J Cardiol. 1999;83:260–3 [II].PubMedCrossRef 180. Bellomo R, Chapman M, Finfer S, Hickling K, Myburgh J. Low-dose dopamine in patients with early renal dysfunction: a placebo-controlled randomised trial. Lancet. 2000;356:2139–43 [II].PubMedCrossRef 181. Kellum JA, Decker JM. Use of dopamine in acute renal failure: a meta-analysis. Crit Care Med. 2001;29:1526–31 [I].PubMedCrossRef 182. Friedrich JO, Adhikari N, Herridge MS, Beyene J. Meta-analysis: low-dose dopamine increases urine output but does not prevent renal dysfunction or death. Ann Intern Med. 2005;142:510–24 [I].PubMedCrossRef 183. Marik PE. Low-dose dopamine: a systematic review. Intensive Care Med. 2002;28:877–83 [I].PubMedCrossRef 184. Ichai C, Passeron C, Carles M, Bouregba M, Grimaud D. Prolonged low-dose dopamine infusion induces a transient improvement in renal function in haemodynamically stable, critically ill patients: a single-blind, prospective, controlled study. Crit Care Med. 2000;28:1329–35 [II].PubMedCrossRef
AZD1390 mw 185. Lauschke A, Teichgraber UK, Frei U, Eckardt KU. Low-dose dopamine worsens renal perfusion in patients with acute renal failure. Kidney Int. 2006;69:1669–74 [II].PubMedCrossRef 186. Allgren RL, Marbury TC, Rahman SN, Weisberg LS, Fenves AZ, Lafayette RA, et al. Protein Tyrosine Kinase inhibitor Anaritide in acute tubular necrosis. N Engl J Med. 1997;336:828–34 [II].PubMedCrossRef 187. Lewis J, Salem MM, Chertow GM, Weisberg LS, McGrew F, Marbury TC, et al. Atrial natriuretic factor in oliguric acute renal failure. Am J Kidney Dis. 2000;36:767–74 [II].PubMedCrossRef 188. Swaerd K, Valsson F, Odencrants P, Samuelsson O, Ricksten SE. Recombinant human atrial natriuretic peptide in ischemic acute renal failure: a randomized placebo-controlled trial. Crit Care Med. 2004;32:1310–5 [II].CrossRef 189. Nigwekar SU, Navaneethan SD, Parikh CR, Hix JK. Atrial natriuretic peptide for management of acute kidney
injury: a systematic review and meta-analysis. Clin J Am Soc Nephrol. 2009;4:261–72 [I].PubMedCrossRef 190. Bouman CS, Oudemans-Van Straaten HM, Tijssen JG, Zandstra DF, Kesecioglu J. Effects of early high-volume RANTES continuous venovenous hemofiltration on survival and recovery of renal function in intensive care patients with acute renal failure: a prospective, randomized trial. Crit Care Med. 2002;30:2205–11 [II].PubMedCrossRef 191. Liu KD, Himmelfarb J, Paganini E, Ikizler TA, Soroko SH, Mehta RL, et al. Timing of initiation of dialysis in critically ill patients with acute kidney injury. Clin J Am Soc Nephrol. 2006;1:915–9 [IVa].PubMedCrossRef 192. Seabra VF, Balk EM, Liangos O, Sosa MA, Cendoroglo M, Jabber BL. Timing of renal replacement therapy initiation in acute renal failure: a meta-analysis.
Photosynth Res 89:141–155CrossRefPubMed Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113CrossRefPubMed Björkman O, Demmig B (1987) Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170:489–504CrossRef Boyd PW, Watson AJ, Law CS, Abraham ER, Trull T, Murdoch R, Bakker
DCE, Bowie AR, Buesseler KO, Chang H et al (2000) A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature 407:695–702CrossRefPubMed Briat JF, Curie C, Gaymard F (2007) Iron utilization and metabolism in plants. Curr Opin Plant Biol 10:276–282CrossRefPubMed Briat JF, Duc C, Ravet K, Gaymard F (2009) Ferritins and iron storage in plants. Biochim Biophys Acta. doi: 10.1016/j.bbagen.2009.1012.1003 Busch A, Rimbauld B, Naumann B, Rensch Wnt inhibitor S, Hippler M (2008) Ferritin is required for rapid remodeling of the photosynthetic apparatus and minimizes photo-oxidative stress in response to iron availability in Chlamydomonas reinhardtii. Plant J 55:201–211CrossRefPubMed Cardol P, Vanrobaeys F, Devreese B, Van Beeumen J, Matagne RF, Remacle C (2004) Higher plant-like subunit composition of mitochondrial complex I from Chlamydomonas reinhardtii: 31 conserved components among
eukaryotes. Biochim Biophys Acta 1658:212–224CrossRefPubMed Desplats C, Mus F, Cuiné S, Billon E, Cournac L, Peltier G (2009) Characterization of Nda2, a plastoquinone-reducing Type II NAD(P)H dehydrogenase in Chlamydomonas chloroplasts. BIBF 1120 research buy J Biol Chem 284:4148–4157CrossRefPubMed Erdner DL, Price NM, Doucette GJ, Peleato ML, Anderson DM (1999) Characterization of ferredoxin and flavodoxin as markers of iron limitation in marine phytoplankton. Mar Ecol Prog Ser 184:43–53CrossRef Fridovich I (1997) Superoxide anion radical (O2−.), superoxide dismutases, and related matters. J Biol Chem 272:18515–18517CrossRefPubMed
Greene RM, VX-680 nmr Geider RJ, Kolber Z, Falkowski PG (1992) Iron-induced changes in light harvesting and photochemical energy conversion processes in eukaryotic marine algae. Plant Physiol 100:565–575CrossRefPubMed Guerinot triclocarban ML (1994) Microbial iron transport. Annu Rev Microbiol 48:743–772CrossRefPubMed Guerinot ML, Yi Y (1994) Iron: nutritious, noxious, and not readily available. Plant Physiol 104:815–820PubMed Harris EH (2009) The Chlamydomonas sourcebook: introduction to Chlamydomonas and its laboratory use, vol 1, 2nd edn. Academic Press, San Diego Howe G, Merchant S (1992) The biosynthesis of membrane and soluble plastidic c-type cytochromes of Chlamydomonas reinhardtii is dependent on multiple common gene products. EMBO J 11:2789–2801PubMed Hubbard JAM, Lewandowska KB, Hughes MN, Poole RK (1986) Effects of iron limitation of Escherichia coli on growth, the respiratory chains and gallium uptake. Arch Microbiol 146:80–86CrossRefPubMed Imlay JA (2006) Iron-sulphur clusters and the problem with oxygen.
In addition to strain FSL Z3-227, all selleck compound 82 isolates were ribotyped using the commercial RiboPrinter system with EcoRI. Single isolates representing
the ribotypes seen in each herd (two isolates from the herd U-10 and a single isolate from each of the remaining herds) (n = 19) were combined with all canine/feline isolates (n = 27) and further screened using a seven housekeeping MLST scheme with PCR primers previously used for characterization of S. pyogenes, S. pneumoniae, or S. uberis[91–95]. See Additional file 7 for primer sequences and PCR profiles. MLST allele sequences were aligned using MAFFT v6.814b [96] as Crenigacestat cost implemented in Geneious v5.1.2. Isolate genetic diversity indices were calculated using the program DNASP version 4.0 [97]. Diversity indices among STs were obtained by concatenating the seven alleles (4,014 bp). Diversity among ribotypes this website and STs was calculated using the formula for haplotype (gene) diversity [97]. Again using the concatenated allele sequences, population differentiation between bovine and canine groupings of isolates (bovine = 19 canine = 26) was determined by assessing the frequency distribution of STs (Fisher exact test) between the groups. Differentiation was also determined by an AMOVA as implemented
in Arlequin v3.11 [98]. The AMOVA differs from the exact test because in addition to assessing ST frequency distribution, it also considers genetic divergence among isolate sequences in its determination of differentiation. With the exception of strain FSL Z3-227 (our genome sequence), all isolates typed using the MLST scheme
(n = 45) were also PCR screened for the presence of a 55 CDS plasmid (see Results and discussion). Presence/absence of the plasmid was Etomidate determined using 25 primer pairs that were contiguous along the length of the plasmid (see Additional file 8). Evolutionary relationships among STs were examined using eBURSTv3 [73]. STs were grouped into clonal complexes and support for complex founders was estimated using 1000 bootstrap replicates. We used the most stringent (default) eBURST setting for grouping STs into a complex, where STs within the same complex shared identical alleles at ≥ six of the seven loci with at least one other member of the complex. Deeper evolutionary relationships (among clonal complexes for example) were inferred using the Bayesian phylogenetic approach implemented in ClonalFrame v1.1 [68]. This approach incorporates a model that attempts to account for recombination. The Markov chain was run with 1,000,000 iterations after an initial burn-in of 50,000 iterations. Three independent runs were used to assess topological convergence. To assess the effect of recombination, all runs were repeated with the recombination rate parameter (R) held at zero (i.e. the effect of recombination on the topology was not accounted for). We used ClonalFrame to calculate the recombination ratios ρ/θ and r/m (average of the three runs).